세포생물학/생화학 4

키나아제4 : kinase의 구분 및 구조(PKA)

키나아제(Kinases)인산화를 정의해 보았다. 이러한 인산화를 촉매하는 효소를 키나아제라고 한다. 따라서 단백질 키나아제라는 촉매 효소를 통해 인산을 기질 단백질에 붙여 다른 단백질의 기능을 수정하는 인산화라고 할 수 있겠다. 즉, 인산화 과정에는 인산을 제공해 줄 공여체, 인산을 이동받을 기질 단백질, 그리고 이를 중재할 키나아제 효소가 등장한다. 하지만 여기에 우리는 하나 더 추가해야 할 매우 중요한 요소가 있다. 보조인자이다. 보통 마그네슘 2가의 양이온(Mg2+)으로 대표되는 금속이온이다. 이 금속이온은 인산의  이동을 용이하게 하고 ATP 결합을 안정화시키는데 매우 결정적인 역할을 한다. 물론 인산공여체는 세포 내 ATP이다. 인산화가 단백질수정 방법으로 인기가 있는 또 하나의 이유도  ATP..

키나아제3 : 인산의 화학적 형태, 에스터 결합 그리고 인산화

인산의 화학적인 측면이제 화학적 측면에서 인을 조금 더 알아보자. 인은 생체내에서 인산(H3PO4)으로 존재한다. pH와 같은 다양한 환경에 영향을 받아 수용액 상태에서 인산은 수소양성자를 각각 하나씩 잃어 3가지 형태로 존재할 수 있다.  위와 같이 하나의 인산이 여러 형태로 존재할 수도 있고, 하나 이상의 인산들이 결합할 수도 있다. 인산들이 두 개 또는 세 개가 결합하여 이인산과 삼인산을 만든다. 아래 이미지에서는 모두 수소양성자가 그대로 모두 결합되어 있는 상태이다. 즉 아래 그림에서 수소들을 잃으면 위 그림에서 볼 수 있는 인산염의 모양이 된다.    에스터결합(Ester bond)이 시점에서 화학에서 에스터(ester)화 반응이라는 것을 잠깐 살펴볼 필요가 있다. 에스테르라고도 읽는 에스터는 ..

키나아제2 : 단백질 번역후 수정방법과 단백질 인산화

단백질의 인산화인이, 좀 더 정확히 표현하자면 인산이 인체내에서 발견되는 여러 지점과 역할들을 살펴보았다. 생명과 직결되는 중요한 역할과 기능을 한다는 말을 이제 충분히 이해하게 되었다. 이러한 인산의 다양한 활약중에서 이제 이미 간략히 언급된 인산화를 집중적으로 상세히 다루어 보고자한다. 세포의 신호전달과정을 공부하면서 끊임없이 나타나는 인산화가 너무나 궁금하여 더 자세히 알고 싶어졌기 때문이다. 특히 단백질의 인산화를 자세히 다루고자한다. 그리고 이를 위해 먼저 단백질에 대하여 간략하게 짚고 가보고자 한다. 단백질의 기본 구조단백질을 만드는 빌딩블록이 아미노산이다. 레고 조각들이 모여 여러가지 물체가 만들어지는 것과 비슷하다 하겠다. 아미노산에는 인체가 만들지 못하는 필수 아미노산(9개), 합성되기는..

키나아제1 : 인(P, Phosphorus), 인산

원자번호 15인 화학 원소인(P, Phosphorus)은 필수미네랄로서 인간을 비롯한 동식물의 모든 살아있는 세포 내에 존재한다. 인체 내에서 인은 지방을 제외한 체질량의 1% 정도를 차지하며, 이 중 85%는 뼈와 치아를 구성하고 나머지 15%는 혈액과 연조직에 분포한다. [1] 원자 번호가 15인 인은 8개의 전자를 채우고 난 최외각 전자가 5개이므로, 이 5개의 전자를 기증하면서 5개의 공유결합을 형성할 수 있다. 인은 반응성이 높아 자연상태에서는 순수한 인의 형태로 존재하는 경우가 매우 드물고, 생체내에서 보통 인산(H3PO4)의 형태로 존재한다. 수용액상태에서는 양성자(H+) 세 개를 모두 잃고 이온상태인 ([PO4]3−)의 형태가 되어 인산염(phosphate)이 되며, 우리가 생화학에서 주로..